Seatrax offers **forged steel sheaves** with hardened grooves for maximum **sheave durability.** **Steel sheaves** provide a robust alternative to **nylon sheaves** in applications with high duty cycle requirements or floating applications with significant motions.

Features:

- Forged **high strength alloy steel sheaves** with hardened grooves.
- Available with Timken® **tapered roller bearings** or **straight roller bearings**.
- Precision **ground grooves** for **imperial** or **metric wire ropes**.
- Can be fitted for use in **boom suspensions, boom tip load reeving** and **block sheaves** on most Seatrax crane models.
- Excellent **wear** and **strength characteristics**.
- Include **lightening holes** to **reduce weight**.
- Specified with D:d ratios ranging from 15%-40% greater than those required by typical certifying authority rules for increased wire rope life.
- Improved **compressive loading characteristics** in elevated temperature environments.
• Shafts are equipped with grease channels and fittings allowing for proper and easy lubrication of individual sheaves.

• Custom spacers are provided for each crane configuration assuring proper fit and function of the sheaves.

• Nuts and lock washers are provided for adjusting and tightening the spacers against the sheave’s bearing cones.

Forged Steel vs. Nylon/Tapered Roller Bearings vs. Straight Roller Bearings

Categorizing the application can provide the best balance between initial costs versus downstream cost. For example, a small utility crane on an unmanned platform would be best served with nylon sheaves with straight roller bearings. The added cost of steel sheaves with tapered roller bearings would typically not balance with the low downstream costs during the life of the low use crane.

A drilling support crane on a floating facility with a 200-foot boom would be an example of an arrangement where the added cost would be of benefit, particularly in the boom suspension, because nylon sheaves with straight rollers would typically be replaced several times over the life of the crane.